
8-bit
Microcontroller

Application
Note

Rev. 2396C–AVR–05/02
AVR460: Embedded Web Server

Introduction
Intelligent homes will be connected to the Internet and require a microcontroller to
communicate with the other network devices. The AVR® embedded web server can
simplify the design process for embedded web server applications. The AVR embed-
ded web server design includes a complete web server with TCP/IP support and
Ethernet interface. It also includes support for sending mail, and software for auto-
matic configuration of the web server in the network. The AVR web server reference
design includes complete source code written in C-language. A comprehensive
designers guide describes all web server components and gives embedded systems
designers a quick start to embedded web servers.

System Description
The AVR embedded web server reference design is designed for integration in digital
equipment. The AVR embedded web server can be plugged into any Ethernet inter-
face and communicate with a standard web browser. Figure 2 illustrates some
situations where the web server can be used.

As shown in Figure 2, various consumer electronics can be controlled from a com-
puter connected to the Internet. The web page is the “Control Center” for the AVR
embedded web server.

Figure 1. AVR Embedded Web Server
1

Suppose the AVR embedded web server is embedded in several units in a house. Every
server is connected to the network. A computer located at home as on Figure 2 controls
all devices and can receive requests from other computers on the Internet. The web
server is identified by its unique IP address and can be controlled remotely from any-
where in the world as long as the authorization is in order.

Figure 2. Monitoring Home Equipment from the Office

TCP/IP Protocol Suite The TCP/IP protocol suite allows computers of all sizes, running different operating sys-
tems, to communicate with each other. It forms the basis for what is called the worldwide
Internet, a Wide Area Network (WAN) of several million computers.

TCP/IP Suite Layers The TCP/IP protocol suite is a combination of different protocols at various layers.
TCP/IP is normally considered to be a 4-layer system as shown in Figure 3.

Figure 3. Four Layers of TCP/IP Protocol Suite

Home Computer

Hub

Television

Fire
wall

Refridgerator

Server

Firewall

Workstation

Hub

Home

Office

Internet

Application

Transport

Network

Link

Telnet, FTP, HTTP

TCP, UDP

IP, ICMP

Device Driver and Interface Card
2 AVR460
2396C–AVR–05/02

AVR460
Application Layer The Application layer handles the details of a particular application. Common TCP/IP
applications include:

• Telnet for remote login

• Browser support for displaying web pages

• File transfer applications

• E-mail applications

The three lower layers do not know anything about the specific application and only take
care of communications details.

Transport Layer TCP is responsible for a reliable flow of data between two hosts. Typically, TCP divides
data passed to it from the application into appropriately sized chunks for the network
layer below, acknowledging received packets that are sent and retransmits lost packets.
Since this reliable, flow of data is provided by the Transport Layer, the Application Layer
above can ignore these details.

UDP is a much simpler service to the Application Layer. It sends packets of data called
datagrams from one host to the other, but with no guarantee that the datagrams reach
the other end. Desired reliability must be added by the Application Layer.

Network Layer This layer is sometimes called the Internet Layer. It handles the movements of packets
around the network. Routing of packets, for example, takes place here. IP (Internet Pro-
tocol) and ICMP (Internet Control Message Protocol) provides the Network Layer in the
TCP/IP Protocol Suite.

Link Layer Data-link or Network Interface Layer is another common name of this layer. The Link
Layer normally includes the device driver in the operating system and the corresponding
network interface (card) in the computer. Together they handle all the hardware details
of physically interfacing with the cable.

Figure 4 shows an example that includes two hosts on a Local Area Network (LAN) such
as Ethernet, using HTTP.

Figure 4. Example with Protocols Involved

Application

Transport

Network

Link

HTTP
Client

TCP

IP

Ethernet
Driver

HTTP
Server

TCP

IP

Ethernet
Driver
3
2396C–AVR–05/02

One side represents the client, and the other the server. The server provides some type
of service to clients, in this case, access to web pages on the server host. Each layer
has one or more protocols for communicating with its peer at the same layer. One proto-
col, for example, allows the two TCP layers to communicate, and another protocol lets
the two IP layers communicate.

The Application Layer is normally a user-process while the lower three layers are usu-
ally implemented in the kernel (the operating system).

Port Numbers Different applications can use TCP or UDP at any time. The Transport layer protocols
store an identifier in the headers they generate to identify the application. Both TCP and
UDP use 16-bit port numbers to identify applications. TCP and UDP store the source
port number and the destination port number in those respective headers.

Servers are normally known by their well-known port number. Every TCP/IP implemen-
tation with a FTP server provides that service on TCP port 21. Every Telnet server is on
TCP port 23. Services provided by any implementation of TCP/IP have well-known port
numbers between 1 and 1023. The well-known ports are managed by the Internet
Assigned Numbers Authority (IANA).

A client usually does not care what port number it uses on its end. All it needs to be cer-
tain of is that whatever port number it uses, it must be unique on its host. Client port
numbers are called ephemeral ports (i.e., short lived). This is because a client typically
exists only as long as the user running the client needs its service, while servers typi-
cally run as long as the host is up. Most TCP/IP implementations allocate ephemeral
port numbers between 1024 and 5000. The port numbers above 5000 are intended for
other services (those that are not well known across the Internet).

The combination of an IP address and a port number is called a socket.

Encapsulation When an application sends data using TCP, the data is sent down the protocol stack,
through each layer, until it is sent as a stream of bits across the network. Each layer
adds information to the data by prepending headers and adding trailers to the data it
receives. Figure 5 shows this process.

Figure 5. Encapsulation of Data as It Goes Down the Protocol Stack

HTTP
Client

TCP

IP

Ethernet
Driver

Ethernet
Trailer

Application
Data

TCP
Header

IP
Header

Ethernet
Header

Ethernet Frame

46 to 1500 Bytes

Application
Data

TCP
Header

IP
Header

IP Datagram

Application
Data

TCP
Header

TCP Segment

Appl.
Header

User
Data

User
Data

14 20 420
4 AVR460
2396C–AVR–05/02

AVR460
Some abbreviations:

• TCP segment: The unit of data that TCP sends to IP.

• IP datagram: The unit of data that IP sends to the network interface.

• Frame: The stream of bits that flows across the Ethernet.

IP (Internet Protocol) adds an identifier to the IP header it generates to indicate which
layer the data belongs to. IP handles this by storing an 8-bit value in its header called
the protocol field. Similarly, many different applications can be using TCP or UDP at any
time. The Transport Layer protocol stores an identifier in the header they generate to
identify the application. Both TCP and UDP use 16-bit port numbers to identify applica-
tions. The TCP and UDP store the source port number and the destination port number
in their respective headers. The network interface sends and receives frames on behalf
of IP, ARP, RARP. There must be some form of identification in the Ethernet header
indicating which network layer protocol generates the data. To handle this, there is a 16-
bit frame type field in the Ethernet header.

Internet Addresses Every interface on the internet has a unique Internet Address (IP Address). The
addresses are 32-bit numbers. Figure 6 shows the structure and the five different
classes of Internet addresses.

Figure 6. The Five Different Classes of Internet Addresses

The 32-bit addresses are normally written as four decimal numbers, one for each byte of
the address. See Table 1. This notation is called dotted-decimal. Since every interface
on internet must have a unique IP address, there must be one central authority for allo-
cating these addresses for networks connected to the worldwide Internet. Internet
Network Information Center (NIC) is the responsible authority.

Table 1. Ranges of Different Classes of IP Addresses

Class Range

A 0.0.0.0 to 127.255.255.255

B 128.0.0.0 to 191.255.255.255

C 192.0.0.0 to 223.255.255.255

D 224.0.0.0 to 239.255.255.255

E 240.0.0.0 to 255.255.255.255

0

7 Bits

NetID

24 Bits

HostID

1 0

14 Bits

NetID

16 Bits

HostID

1 1 0

21 Bits

NetID

8 Bits

HostID

1 1 1 0

28 Bits

Multicast Group ID

1 1 1 1

28 Bits

(Reserved for Future Use)

A

B

C

D

E

5
2396C–AVR–05/02

There are three types of IP addresses: Unicast (destined for a single host), Broadcast
(destined for all hosts on a given network), and Multicast (destined to a multicast group).

IP:
Internet Protocol

All TCP, UDP and ICMP data get transmitted as IP datagrams. IP provides an unreli-
able, connectionless datagram delivery service. There is no guarantee that an IP
datagram successfully gets to its destination. When something goes wrong, IP has a
simple error handling algorithm: Throw away datagram and try to send an ICMP mes-
sage back to the source. Any required reliability must be provided by the upper layers.

Connectionless means that IP does not maintain any state information about successive
datagrams. Each datagram is handled independently from all other datagrams. This
means that IP datagrams can get delivered out of order.

IP Header Figure 7 shows the format of an IP datagram. The normal size of the IP header is 20
bytes, unless options are present.

The most significant bit is numbered 0 at the left, and the least significant bit of a 32-bit
value is numbered 31 on the right. The 4 bytes in the 32-bit value are transmitted in the
order: bits 0 - 7, then bits 8 - 15 and so on. This is called Big-Endian byte ordering,
which is the byte ordering required for all binary integers in the TCP/IP headers as they
traverse a network. This is called the network byte order.

The fields in the IP header are described below:

Version The current protocol version is 4, so IP is sometimes called IPv4.

Figure 7. IP Header Fields

Header Length The header length is the number of 32-bit words (4 bytes per word) in the header,
including any options. This limits the header length to 60 bytes.

Type-of-service The field, (TOS) is composed of a 32-bit precedence field (which is currently ignored), 4
TOS bits, and an unused bit that must be 0. The 4 TOS bits are: minimize delay, maxi-
mize throughput, maximize reliability and minimize monetary cost. Only 1 of these 4 bits
can be turned on. If all 4 bits are 0, it implies normal service.

Total Length This is the total length of the IP datagram in bytes. Using this field and the header length
field, we know where the data portion of the IP datagram starts and its length. Since this
is a 16-bit field, the maximum size of an IP datagram is 65535 bytes.

Identification This field uniquely identifies each datagram sent by a host. It normally increments by
one each time a datagram is sent.

4-bit
Version

4-bit Header
Length

8-bit Type of
Service (TOS) 16-bit Total Length (in Bytes)

16-bit Identification
3-bit
Flag 13-bit Fragment Offset

16-bit Header Checksum8-bit Time to Live (TTL) 8-bit Protocol

32-bit Source IP Address

32-bit Destination IP Address

Options (if any)

Data

20 Bytes

0 15 16 31
6 AVR460
2396C–AVR–05/02

AVR460
Time-to-live Time-to-live sets an upper limit on the number of routers through which datagram can
pass. It limits the lifetime of the datagram. It is initialized by the sender to some value
(often 32 or 64) and decrements by one in every router that handles the datagram.
When this field reaches 0, the datagram is discarded, and the sender is notified with an
ICMP message. This prevents the packet from getting caught in eternal routing loops.

Protocol Protocol is used by IP to demultiplex incoming datagrams. It identifies which protocol
gave the data for IP to send.

Header Checksum The Header checksum is calculated over the IP header only. It does not cover any data
that follows the header. ICMP, UDP and TCP all have a checksum in their own headers
to cover their own header and data.

Every IP datagram contains the source IP address and the destination IP address.
These are 32-bit values.

The Option Field This is a variable-length list of optional information for the datagrams. The options are
rarely used and not all hosts and routers support the option.

UDP:
User Datagram
Protocol

UDP provides a way for applications to send encapsulated raw IP datagrams and send
them without having to establish a connection. The protocol is transaction oriented.
Delivery and duplicate protection is not guaranteed.

UDP Header The UDP header is 8 bytes. The field UDP length is the length in bytes of the user data-
gram including both header and data. UDP checksum is calculated and stored by the
sender and then verified by the receiver. The procedure is the same as is used in TCP.

Figure 8. The UDP Header

0 31

Source Port

UDP Length

Destination Port

UDP Checksum
7
2396C–AVR–05/02

TCP: Transmission
Control Protocol

TCP and UDP use the same network layer (IP), but TCP provides a totally different ser-
vice to the Application Layer. TCP provides a connection-oriented, reliable, byte stream
service. The term connection-oriented means the two applications using TCP (normally
considered a client and a server) must establish a TCP connection with each other
before they can exchange data.

TCP provides reliability by doing the following:

• The application data is broken into what TCP considers the best sized chunks to
send. This is totally different from UDP, where each write by the application
generate a UDP datagram of that size. The unit of information passed by TCP to IP
is called a segment.

• When TCP sends a segment it maintains a timer, waiting for the other end to
acknowledge reception of the segment. If an acknowledge is not received in time,
the segment is retransmitted.

• When TCP receives data from the other end of the connection, it sends an
acknowledgment. This acknowledgment is not sent immediately, but normally
delayed a fraction of a second.

• TCP maintains a checksum on its data header page. This is an end-to-end
checksum whose purpose is to detect any modifications of the data in transit. If a
segment arrives with an invalid checksum, TCP discards it and does not
acknowledge receiving it. This expects the sender to time out and retransmit.

• Since TCP segments are transmitted as IP datagrams, and since IP datagrams can
arrive out of order, TCP segments can also arrive out of order. A receiving TCP
resequences the data if necessary, passing the received data in the correct order to
the application.

• Since IP datagrams can get duplicated, a receiving TCP must discard duplicate
data.

• TCP also provides flow control. Each end of a TCP connection has a finite amount
of buffer space. A receiving TCP only allows the other end to send as much data as
the receiver has buffer for. This prevents a fast host from taking all the buffer on a
slower host.

A stream of 8-bit bytes is exchanged across the TCP connection between the two appli-
cations. There are no record markers automatically inserted by TCP. This is what is
called a byte stream service. If the application on one end writes 10 bytes, followed by a
write of 20 bytes, followed by a write of 50 bytes, the application at the other end may
read 80 bytes in four reads of 20 bytes at a time. One end puts a stream of bytes into
TCP and the same, identical stream of bytes appears at the other end. However, TCP
does not interpret the contents of the bytes at all. TCP has no idea if the data bytes
being exchanged are binary data, ASCII characters, or any other form. The interpreta-
tion of this byte stream is up to the applications on each end of the connection.

TCP Header TCP data is encapsulated in an IP datagram, as shown in Figure 9.

Figure 9. Encapslation of TCP Data in a IP Datagram

IP Header TCP Header TCP Data

TCP Segment

IP Datagram
8 AVR460
2396C–AVR–05/02

AVR460
Figure 10 shows the format of the TCP header. Its normal size is 20 bytes, unless
options are present.

Each TCP segment contains the source and destination port number to identify the
sending and receiving application. These two values, along with the source and destina-
tion IP addresses in the IP header uniquely identify each connection.

The combination of an IP address and a port number is called a socket. TCP is a full-
duplex service, this means that data can be flowing in both directions, independent of
each other. Therefore, each end of the connection must maintain a sequence number of
data flowing in each direction.

Sequence Number This identifies the byte stream of data from the sending TCP to the receiving TCP that
the first byte of data in this segment represents. TCP numbers each byte with a
sequence number. The sequence number is a 32-bit unsigned number that wraps back
around to 0 after reaching 232-1.

Acknowledge Number This contains the next sequence number that the sender of the acknowledgment
expects to receive. This is therefore the sequence number plus 1 of the last successfully
received byte of data. This field is only valid if the ACK flag is set. The 32-bit acknowl-
edgment number field is always part of the header, as is the ACK flag. This field is
always set and the ACK FLAG is on.

Header Length This gives the length of the header in 32-bit words. This is required because the length
of the options field is variable. With a 4-bit field, TCP is limited to a 60-byte header. With-
out options, however, the normal size is 20 bytes.

Figure 10. TCP Header

Flag Bits There are six flag bits in the TCP header – one or more of them can be turned on at the
same time:

1. URG – The urgent pointer is valid.

2. ACK – The acknowledgment number is valid.

3. PSH – The receiver should pass data to the application as soon as possible.

4. RST – Reset the connection.

5. SYN – Synchronize sequence numbers to initiate a connection.

6. FIN – the sender is finished sending data.

16-bit Destination Port Number

32-bit Sequence Number

32-bit Acknowledgement Number

16-bit Window Size

16-bit TCP Checksum

Options (if any)

Data

20 Bytes

0 15 16 31

16-bit Urgent Pointer

16-bit Source Port Number

4-bit Header
Length

Reserved
(6 bits)

F
I
N

S
Y
N

R
S
T

P
S
H

A
C
K

U
R
G

9
2396C–AVR–05/02

Window Size TCP’s flow control is provided by each end advertising a window’s size. This is the num-
ber of bytes, starting with the one specified by the acknowledgment number field, that
the receiver is willing to accept. This is a 16-bit field, limiting the window to 65535 bytes.

Checksum Checksum covers the TCP segment: the TCP header and the TCP data. This is a man-
datory field and must be calculated and stored by the sender and then verified by the
receiver.

Urgent Pointer The urgent pointer is valid only if the URG flag is set. This pointer is a positive offset that
must be added to the sequence number field of the segment to yield the segment num-
ber of the last byte of urgent data. TCP’s urgent mode is a way for the sender to transmit
emergency data to the other end.

Checksum The most common option field is the MSS (maximum segment size). Each end of a con-
nection normally specifies this option on the first segment exchanged (the one sent with
the SYN flag set to establish the connection). It specifies the maximum size segment
that the sender wants to receive.

Data The data portion of the TCP header is optional. A header without data is used to
acknowledge received data if there is no data to be transmitted in that direction. There
are also some cases dealing with time-outs when a segment can be sent without any
data.

Ethernet Encapsulation The term Ethernet generally refers to a standard published in 1982 by Digital Equipment
Corporation, Intel Corporation, and Xerox Corporation. It is the predominate form of
local area network technology used with TCP/IP today. It uses an access method called
CSMA/CD (Carrier Sense, Multiple Access with Collision Detection). It operates at
10/100 Mbits/s and uses 48-bit addresses. Two encapsulations are used, described by
RFC 1042 and RFC 894. RFC 894 encapsulation is most commonly used. Figure 11
shows the RFC 894 encapsulation.

The frame format uses 48-bit (6-byte) destination and source addresses. The ARP and
RARP protocols map between the 32-bit IP addresses and the 48-bit hardware
addresses.

Figure 11. Ethernet Encapsulation (RFC 894)

Destination Address Specifies the 48-bit destination address.

Source Address Specifies the 48-bit source address.

Ethernet Type Identifies the type of data that follows.

CRC Cyclic redundancy checksum used to detects errors in the rest of the frame.

Minimum Size For an Ethernet frame it is 46 bytes. To handle this, pad bytes are inserted to assure
that the frame is sufficiently large.

Preamble
Dest.
Adr.

Source
Adr. Data CRC

8 66 2 445-1500

Type
10 AVR460
2396C–AVR–05/02

AVR460
ARP and RARP –
(Reverse) Address
Resolution Protocol

Address resolution provides a mapping between the two different forms of addresses:
32-bit IP addresses and whatever type of address the data link layer uses. ARP is spec-
ified in RFC 826.

ARP provides a dynamic mapping from an IP address to the corresponding hardware
address. The term dynamic since it happens automatically and is normally not a concern
of either the application user or the system administrator.

RARP is used by many diskless systems to obtain their IP address when bootstrapped.
The RARP packet format is nearly identical to the ARP packet.

ARP cache maintenance on each host is essential to efficient operation of ARP. The
cache maintains the recent mappings from Internet addresses to hardware addresses.
The normal expiration time of an entry in the cache is 20 minutes from the time the
cache was created.

ARP Packet Format Figure 12 shows the format of an ARP request and reply packet, when used on an
Ethernet to resolve an IP address.

Source and Destination
Ethernet Addresses

The special Ethernet destination address of all 48 bits set (0xFFFFFFFFFFFF) means
the broadcast address. All Ethernet interfaces on the LAN receive these frames.

Ethernet Frame Type This specifies the type of data that follows. For an ARP request or an ARP reply, this
field is 0x0806.

The adjectives hardware and protocol are used to describe the fields in the ARP pack-
ets. For example, an ARP request asks for the hardware address corresponding to a
protocol address.

Hard Type This specifies the type of hardware address. Its value is 1 for an Ethernet.

Prot Type Prot Type specifies the type of protocol address being mapped. Its value is 0x0800 for
an IP address.

Hard Size and Prot Size Hard Size and Prot Size specify the sizes (in bytes) of the hardware address and the
protocol addresses. For an ARP request or reply for an IP address on an Ethernet they
are 6 and 4, respectively.

Op Op specifies whether the operation is an ARP request (a value of 1), ARP reply (2),
RARP request (3), RARP reply (4). This field is required since the frame type field is the
same for an ARP request and an ARP reply.

Sender Hardware Address Ethernet address in this example, the sender’s protocol address (an IP address), the tar-
get hardware address, and the target protocol address.

For an ARP request, all the fields are filled in except the target hardware address. When
a system receives an ARP request to it, it fills in its hardware address, swaps the two
sender addresses with the two target addresses, sets the OP field to 2 and sends the
reply.
11
2396C–AVR–05/02

Dynamic Host
Configuration
Protocol (DHCP)

DHCP provides configuration parameters to Internet hosts. Hosts can send a DHCP-
packet while booting, DHCP-servers (if present) reply to this message and supplies the
host with parameters necessary to complete the reboot.

Figure 12. Format of ARP Request or Reply Packet When Used on an Ethernet.

Figure 13. DHCP Header

Parameters provided by DHCP include IP address, gateway’s IP address, DHCP-
server’s IP address, server hostname and lease time. This gives a dynamic and easy
maintenance of the network and IP addresses on the network for the network adminis-
trator and automatic configuration for the network clients. The IP address is leased for a
given period, typically 90 days, but can be released if the host does not need it anymore.
When half the lease time is used, the host should ask for a new lease time. If the lease
time is not renewed before the lease time expires, the host must give up its IP address,
and wait until a new IP address is provided.

Ethernet
Dest. Addr

Ethernet
Source Addr

Frame
Type

Hard
Type

Prot
Type

Op
Sender

Ethernet Addr
Sender
IP Addr

Target
Ethernet Addr

Target
IP Addr

6 6 2 412 2 1 46 62

Ethernet Header 28 Byte ARP Request/Reply

Prot SizeHard Size

3
0
0
 B

yt
e
s

0 7 8 15 16 23 24 31
Opcode

(1=request, 0=reply)
Hardware Type

(1=Ethernet)
Hardware Addr.

Length (6 for Ethernet)
Hop Count

Transaction ID

Number of Seconds (Unused)

Client IP Address

Your IP Address

Server IP Address

Gateway IP Address

Client Hardware Address (16 Bytes)

Server Hostname (64 Bytes)

Boot Filename (128 Bytes)

Vendor-specific Information (64 Bytes)
12 AVR460
2396C–AVR–05/02

AVR460
Hypertext Transfer
Protocol (HTTP)

The HTTP protocol is a protocol that allows a (web) client to request files or other
resources from a server. Various types of requests can be sent by the client. The most
basic are the “GET” request and the “POST” request which are used to fetch and post
data, respectively. The server processes the request, returns a header containing a sta-
tus code and either a file or an HTML document attached after the header. Finally, the
server closes the connection.

HTTP Message An HTTP message consists of requests from client to server and responses from server
to client. The message format is similar in many ways to that used by Internet Mail and
the Multipurpose Internet Mail Extension (MIME) as defined in RFC 822 and RFC 1521.

HTTP Request Message A request message consists of a request-line followed by some header-lines specifying
the request. Example (POST) request is shown in Table 2.

HTTP Response Message The response messages consists of a response-line followed by header-lines and the
entity body. The entity body is separated from the headers by a null line. Example (GET)
response is shown in Table 3.

Table 2. Example POST Request

Request-line POST/ewsScript.cgi HTTP/1.0

Request-headers
Referer: http://ews/ewsScript.cgi?action=add&form=resource

User-Agent: Mozilla/4.0 (compatible; MSIE 5.01; Windows NT® 5.0)

Entity-headers

Accept-encoding: gzip, deflate

Content-type: application/x-www-form-urlencoded

Content-length: 113

CRLF Carriage Return, Line Feed

Entity-body action=add&form=resource

Table 3. Example GET Response

Status-line HTTP/1.0 200 OK

Response-headers Server: Atmel AVR EWS

Entity-headers
Content-type: image/gif

Content-length: 1340

CRLF Carriage Return, Line Feed

Entity-body <file contents comes here>
13
2396C–AVR–05/02

HTTP Methods The first word in the request line is the name of the method to be executed. Since the
method is specified in this way, HTTP can be expanded to cover the needs of future
object-oriented applications. The common methods are listed below in Table 4.

Status Codes Every request gets a response starting with a status line. The status line consists of the
protocol version followed by a numeric status code and its associated textual phrase.
The common HTTP/1.0 status codes are listed below in Table 5.

Table 4. The Commonly Built-in HTTP Request Methods

Method Description

GET Request to read a web page or whatever information is identified by the
Request-URI.

POST Append to a named resource (e.g. a Web page), or provide a block of data
to a data-handling process at the server.

HEAD Request to read a web page’s header.

PUT Request to store a web page.

DELETE Remove a web page.

LINK Connects two existing resources.

UNLINK Breaks an existing connection between two resources.

Table 5. Common Status Codes

Numeric Code Description

200 OK

201 Created

202 Accepted

204 No Content

301 Moved Permanently

302 Moved Temporarily

304 Not Modified

400 Bad Request

401 Unauthorized

403 Forbidden

404 Not Found

500 Internal Server Error

501 Not Implemented

502 Bad Gateway

503 Service Unavailable
14 AVR460
2396C–AVR–05/02

AVR460
Simple Mail Transfer
Protocol (SMTP)

SMTP, as defined in RFC 821, is designed to transfer mail over a reliable ordered data
stream channel. When sending mail over the Internet, TCP is used for transport.

SMTP Mail Transfer The sender establishes a connection with the receiver on port 25, and identifies itself
with the HELO command. The sender then transmits the source and destination mail
addresses, using the MAIL– and the RCPT–command. If the receiver can accept the
mail it replies with a 250 reply to each of these commands. The sender then transmits a
DATA command, if the receiver replies with 354, the sender may start transmitting the
message. The end of the message is indicated by <CRLF>.<CRLF>. After successful
reception the receiver replies with a 250, the sender may then send a QUIT command to
close the connection.

The receiver may reply with various error codes during all of the steps described above.

Diagnostic Programs:
PING

Typical programs include ping and traceroute. They can both be run from Unix® or MS-
DOS.

The Ping program was written by Mike Muss and tests whether another host is reach-
able. The program sends an ICMP echo request message to a host, expecting an ICMP
echo reply to be returned. Ping measures the round-trip time to the host, giving some
indications of how far away the host is.

The Ping program that sends the echo request is called the client and the host being
pinged the server. Most TCP/IP implementations support the Ping server directly in the
kernel– the server is not a user process.

Figure 14 shows the ICMP echo request.

Figure 14. Format of ICMP Message for Echo Request and Echo Reply

Table 6. Most Commonly Used SMTP Commands

Command Description Example

HELO Used to identify the sender-SMTP to the receiver-
SMTP

HELO EWS

MAIL Used to specify the senders mail address MAIL FROM:
<avr@atmel.com>

RCPT Used to specify the receivers mail address RCPT TO:
<itanium@intel.com>

DATA Used by the sender to initiate the transfer of the
message

DATA

QUIT Tells the receiver to close the channel QUIT

0 7 8 15 16 31

Type (0 or 8) Code (0) Checksum

Optional Data

Identifier Sequence Number 8
B

yt
es
15
2396C–AVR–05/02

As with other ICMP query messages, the server must echo the identifier and sequence
number fields. Also, any optional data sent by the client must be echoed. The sequence
number starts at 0 and increments every time a new echo request is sent. Ping prints
the sequence number of each returned packet, allowing us to see if packets are miss-
ing, reordered, or duplicated. IP is the best effort datagram delivery service, so any of
these three conditions can occur.

When the ICMP echo reply is returned, the sequence number is printed, followed by the
TTL, and the round-trip time is calculated.

Hardware The AVR embedded web server reference design is designed to be flexible for future
development. The web server primarily communicates through an Ethernet connection.
But it is also able to communicate with SLIP and modem connection using the built–in
UART. A CPLD is included in the reference design to allow memory mapping of other
devices to the system. With only SRAM and the Ethernet controller connected to the
data bus the CPLD can be omitted.

Figure 15 shows how the microcontroller communicates through Ethernet and serial
communication.

Figure 15. Overview of Data Flow between Components

The hardware design is flexible, making it usable for many applications. It is designed to
be used with Ethernet, SLIP or PPP connections, either through a LAN, another com-
puter or through a dial-up connection. It is also possible to connect other external
peripherals to the system. The on-board Flash memory can be expanded without hard-
ware changes.

Memory The web server includes enough memory to develop large applications on top of the
web server protocols. 32K bytes of external SRAM is used for buffering data. A 2-Mbit
external DataFlash® is used for storing web pages to allow a large amount of pages to
be stored. The SRAM is connected to the address bus and data bus. The Serial Periph-
eral Interface (SPI) is used for communication with the DataFlash.

Ethernet Controller The Ethernet controller was originally a 16-bit ISA device, but can also be controlled in
8-bit mode. The Ethernet controller is configured as an 8-bit device.

The Ethernet controller features a 4K bytes of internal memory which is accessed
through the I/O registers or directly through memory mapping of the entire memory.

Microcontroller

Ethernet
Controller

Serial
Communication

Ethernet
16 AVR460
2396C–AVR–05/02

AVR460
Default operation on the Ethernet controller is I/O mode and address 0300h. Since only
address lines A0 - A12 are connected (need only 4 K bytes of address space), the I/O
registers are mapped to address 8300h - 830Fh (I/O mode when the address lines into
the PLD have the following configuration: bit 15 is high and bit 14 is low). By configuring
the Ethernet controller through the I/O registers, the address can be changed and mem-
ory mode can be enabled. Memory mode operations can be mapped into address
locations C000h - D000h.

Limitations The web server has no obvious limitations. The microcontroller SRAM size is limited to
32 Kb, but this should be enough for development of the web server with a range of
applications on top of the TCP/IP stack. The ATmega103 microcontroller provides 128K
bytes of internal programmable Flash memory which is sufficient for a large range of
applications. The web server runs at a speed of 4.608 MHz which makes the microcon-
troller able to handle incoming requests, and performance to handle other applications.

Communication and Add-on
Cards

In addition to the Ethernet controller, the card has one UART making it possible to run
the link through a SLIP/PPP connection or sending debugging information to a
computer.

There is also a 20-pin connector for an additional card. This may be a card measuring
the temperature or a card with relays to do a special task such as opening and closing a
window. The connector has ground and power pins to supply the add-on card with
power, a 20 MHz clock signal and eight input and eight output pins. The input pins are
connected to the analog to digital converter on the microcontroller so they can be used
either as digital I/O pins or analog inputs for measuring analog signals with the internal
10-bit A/D converter.

AVR Software The software running on the AVR embedded web server follows the same layered struc-
ture as used in the TCP/IP protocol suite. Every layer acts independently from each
other. An Ethernet controller driver controls the Ethernet interface. The Address Resolu-
tion Protocol (ARP) translates IP addresses to Ethernet MAC addresses (and vice
versa) The Internet Protocol (IP) delivers packets to Transmission Control Protocol
(TCP), UDP, and Internet Control Message Protocol (ICMP), the ICMP answers to PING
requests and TCP/UDP delivers data to the applications. The applications can commu-
nicate with the transport layer through buffers with data and variables with control
information. This section explains how the TCP/IP protocol suite is built up in our
approach.

Figure 16. Protocol Stack

DHCP HTTP FTPSMTP

UDP TCP

IP/ICMP/ARP

ETHERNET
17
2396C–AVR–05/02

Link Layer The Ethernet controller is configured to generate an interrupt every time a packet
addressed directly to the Ethernet address arrives or when a broadcast arrives. When
an interrupt occurs, the microcontroller reads the whole Ethernet frame into memory.

Ethernet Driver A buffer of 1514 bytes, which is the maximum frame size on Ethernet, is reserved for
this frame. Once the frame is transferred to the microcontroller, the Ethernet header is
checked in order to ensure not receiving a misplaced frame. If the Ethernet address
seen by the receiver is either a broadcast (all binary 1’s) or addressed directly to specific
Ethernet device, the frame is sent to the next layer or protocol according to the field, pro-
tocol type, in the Ethernet header.

Network Layer The network layer controls the communication between hosts on the Ethernet. There is
no form of transmission control to ensure that IP datagrams arrive to the host or that all
IP datagrams from another host is received. This makes the layer rather easy to make.
The ICMP sends messages between hosts and is only used to answer PING requests
from a host. The IP handles communication for the overlaying Transport Layer.

ARP:
Address Resolution
Protocol

If the type in the Ethernet header is 0x0806, the frame is sent to the ARP which calcu-
lates the checksum. The checksum computed must always equal to zero. If the
checksum is correct, the microcontroller checks to see if this is a request for the IP
address or a response to a request sent by the microcontroller. If it is a request, a
response is returned with the Ethernet address filled into the sender’s Ethernet address.

A request for an Ethernet address can also be initiated by TCP or UDP. TCP or UDP
checks to see if the Ethernet address for the user is available and if it’s not, a request is
sent. When the response to the request returns, ARP fills the Ethernet address into an
Ethernet/IP address translation table. This table contains the last ten Ethernet
addresses communicated with the web server.

IP:
Internet Protocol

An IP datagram contains a TCP Segment, UDP datagram, ICMP message or another
transport control protocol segment. The IP offers a connectionless and unreliable deliv-
ery and is in this web server only used to check the datagram for errors and direct the
data to the correct protocol.

When an IP datagram arrives the checksum is controlled and if the checksum is correct,
the protocol field in the header is controlled. Figure 7 shows the protocol types and cor-
responding message types for IP protocols. Protocols not shown in Figure 7 are
discarded.

When IP gets a message or segment from either ICMP, TCP, or UDP, IP makes a new
header for the datagram and computes a new checksum before the datagram is sent to
the link layer.

Table 7. IP Protocol and Message Types

Protocol Message type

0x01 ICMP

0x06 TCP

0x11 UDP
18 AVR460
2396C–AVR–05/02

AVR460
DHCP:
Dynamic Host
Configuration Protocol

The implementation is based on the specifications in RFC2131. In the current imple-
mentation DHCP is only used for obtaining an IP address. Additional configuration
parameters from the DHCP-server are ignored.

Interface To start the DHCP-client dhcp() must be called once. A request for an IP address will
then be made and eventually the web server will get an IP address for a given lease
time and enter the state BOUND. To maintain renewing of the lease time the function
dhcp() must be called regularly by the web server. Expiration of the lease time is moni-
tored by a counter. Accumulation of the counter is performed by the function
checkDHCP(). This function must be called within the timer interrupt function of timer0.

Initialization DHCP is used for initial configuration before the TCP/IP software has been configured.
In its communication with the DHCP server, it will have to send and receive UDP pack-
ets. A requirement is, therefore, that the IP layer must be able to forward packets to the
UDP layer even before it has been configured with an IP address. To accomplish this
the IP layer check if the flag dhcpConf is set. In that case IP forward any packet, regard-
less of addresses, right up to the DHCP The flag is reset when DHCP reach the state
BOUND.

Lease Time The lease time is the time quantum for which the DHCP server can grant the offered IP
address. When lease time is received from the server it is converted from seconds to
minutes to reduce the size of the stored variable. The counter that monitors the lease
time, dhcpStatus.min increments once every minute. This is done in checkDHCP()
which is called on every timer0 interrupt. The constant DHCP_MINUTE should be
scaled to match the clock frequency used.

DhcpStatus.min is limited to 45 days (at 4.6 MHz clock frequency). Because DhcpSta-
tus.min must be able to count to T1, which is 0.5 • lease time, this means that the
longest lease time that can be handled is 90 days. Lease times extending 90 days will
simply be interpreted as 90 days.

Other Modifications and
Limitations

The DHCP client stores the obtained IP address in EEPROM. After a reboot the client
reads this IP address and sends a request to the DHCP server with the old IP address in
the requested IP address field.

If there is no answer to a discover or request message, the messages will be resent
after a short period of waiting. The function wait (unsigned char time) is called to poll the
UDP port for incoming packets. The input parameter time is the multiple of 3,64 seconds
(dependent of clock frequency) before the wait function generates a time-out.

The client simply accept the first incoming offer in response to a discover message with-
out trying to choose among servers.

Decline and release messages are not implemented. This means that the client has no
way to release a leased IP address.

ICMP:
Internet Control Message
Protocol

The ICMP is used only to answer PING requests from a client. All other messages are
discarded. When an ICMP message is received, the checksum is controlled and if the
message is an echo request, the microcontroller changes the request to a response,
calculates a new checksum and returns the message to the client.
19
2396C–AVR–05/02

Transport Layer On the transport layer there are two major protocols which offer two different kinds of
service; TCP which is a reliable delivery service and UDP which offers an unreliable ser-
vice. TCP also offers flow control for retransmission of segments and acknowledgement
of received segments.

Transmission Control
Protocol

The TCP is the most complex of the protocols in the TCP/IP protocol stack. TCP makes
a connection oriented and reliable delivery of data and controls the flow between the two
hosts. Before a connection is established, the two hosts perform a handshake to make
sure both hosts are ready for transmission. When a connection is closed, both hosts
must confirm the closing before the connection is shut down. A sliding window makes
sure the hosts don’t send segments that the other host is not able to receive. Typically,
the size of the sliding window is in the range 512 - 8192 bytes.

TCP State Machine A state machine controls the connection. Figure 17 shows this state machine according
to the standard described in RFC 793.

Figure 17. TCP State Machine According to the Standard Described in RFC 793.

The implementation in the AVR embedded web server follows the standard given in
RFC 793 (Transmission Control Protocol) and RFC 1122 (Requirements for Internet
Hosts) except for some special cases:

FIN_WAIT1

FINWAIT2

CLOSE_WAIT

Closing

TIME_WAIT

LAST_ACK

SYN_RCVD

Established

SYN_SENT

Closed

Listen
20 AVR460
2396C–AVR–05/02

AVR460
• Urgent and Precedence. The use of urgent pointers and precedence is considered
unnecessary for our implementation and is not implemented at all. Such options are
ignored.

• Retransmissions. Algorithms for calculating retransmission times, such as Jacobson
slow start algorithm and Karn’s algorithm, are omitted.

• Application Layer – TCP interface. RFC 1122 requires TCP implementations to
support an error reporting mechanism. This mechanism and other mechanisms for
communication between TCP and application are omitted.

LISTEN In the LISTEN state TCP waits for either an application to initiate a transfer or another
host to request a connection. When a TCP segment arrives in LISTEN state, TCP first
checks if the RST(reset) flag is set. If the flag is set, the segment is discarded. Second
TCP looks for an acknowledge, which should not happen here, and sends a RST back
to the user if ACK is set. Next it looks for a SYN. If the SYN flag is set, and there are
room for another socket, a Transmission Control Block (TCB) and a socket is created,
next state is SYN_RCVD and a SYN/ACK is returned.

SYN_SENT The state machine enters this state when the server application initiates a transfer and a
SYN is sent. When a segment arrives in this state, TCP checks for an ACK. If the ACK
flag is set and the sequence number acknowledged is less or equal the sequence num-
ber sent, a RST is sent (if the RST flag is not set in the segment). Then the segments
are dropped and the TCP connection deleted. If the acknowledged sequence number is
correct and SYN is set, an ACK is returned and next state is ESTABLISHED. If the ACK
flag is not set but SYN is set, return a SYN/ACK to host and next state is SYN_RCVD. In
other cases, the segment is dropped.

SYN_RCVD This state occurs if a SYN is received while in either LISTEN state or SYN_SENT state.
First check if the sequence number is acceptable(1). If the sequence number is not
acceptable, send a reply with an ACK and drop the segment. If the sequence number is
acceptable, check for RST. If the RST flag was set, delete the TCB and drop the seg-
ment. Then check for the SYN flag. If the SYN flag was set, reply with RST, drop the
segment and delete the TCB. If the ACK flag is set, the next state is ESTABLISHED. If
the ACK flag was not set, drop the frame.

Note: 1. Acceptable means that the segment received is within the window.

Established Established state is the main state in the TCP state machine. This is the state where
most of the data transfer appears. Like we did in the SYN_RCVD state, we first check to
see if the sequence number is acceptable and if the RST or SYN flag is set. If one of
these flags are set, a RST reply is sent and the TCB is deleted. Next check for an ACK.
If the ACK flag is set, update the window and delete elements acknowledged from
retransmission queue. The next thing to do is to process the data in the segment. This
means to copy the contents to the receive buffer and update window size. If the FIN flag
is set, enter CLOSE_WAIT and acknowledge the FIN. If the application wants to close
the connection, send a FIN and enter FIN_WAIT1.

FIN_WAIT1 This state does all processing in the same manner as the ESTABLISHED state. The
only exception is, when all segments sent are acknowledged, the next state is
FIN_WAIT2.

FIN_WAIT2 Like FIN_WAIT1, this state processes all segments in the same way as ESTABLISHED.
The only exception is when the FIN flag is received, an acknowledge is returned, the
next state is TIME_WAIT.
21
2396C–AVR–05/02

CLOSE_WAIT While in this state, the only segments arriving should be acknowledges to segments
sent. The other host is done sending data, so when there is no more data to send from
the server, a FIN should be sent and connection closed. First check to see if the
sequence number is acceptable and if the RST or SYN flag is set. If one of these flags
are set, a RST reply is sent and the TCB is deleted. Next check for an ACK. If the ACK
flag is set, update the window and delete elements acknowledged from retransmission
queue. When the application wants to close the connection, a FIN is sent and next state
is LAST_ACK.

LAST_ACK The only segments that should arrive here are acknowledges of either previous data
segments or our FIN. If this is not an acknowledge of our FIN, drop the table. Else delete
the TCB and next state is LISTEN.

TIME_WAIT After the server has closed the connection, it must still take care so the other host
receives the last segments from the retransmission buffer. Nothing is done in this state
except for the normal retransmission handling. After the time-out the TCB is deleted.

Sockets and Windows When a connection is established, a Transmission Control Block (TCB) is created. This
block contains information about the connection and a pointer to the input and output
buffers. The buffer size is determined by the constant TCP_WIN_SIZE and the maxi-
mum number of TCBs are determined by the constant TCP_MAX_SOCKETS. When the
connection is established, and when an acknowledge is received, the window size is
updated. This means that segments with sequence number above acknowledged
sequence number plus window size should not be sent or received. If a segment arrives
out of order, the segment is processed and data stored in the buffer at the correct
location.

Applications Several applications may be implemented in the AVR embedded web server. The main
limitation is memory usage and performance. Running several applications at once
means lower performance. Applications implemented in AVR embedded Ethernet are
HTTPD, FTPD and mail client. HTTPD is a HTTP server to provide web pages to a stan-
dard web browser, FTPD is a file transfer protocol server that enables user to remote
update the contents of the server from anywhere in the network. SMTP is a mail client
used to send mail to specified users using a specified mail server.

File Transfer Protocol
Daemon

The file transfer protocol is implemented as described in RFC 959, but with several
exceptions. According to RFC 959 the minimum implementation of FTP should support
the following commands: USER, QUIT, PORT, TYPE, MODE, STRU, RETR, STOR and
NOOP. MODE, STRU and TYPE should be implemented for the supported values.
Since MODE and STRU can only have one value in our implementation, these com-
mands are not implemented and “500 Command not understood.” is returned. TYPE
supports ASCII and BINARY types, which are the one needed for transmissions of text
and binary files. The rest of the commands in the list are implemented in addition to
PASS for sending password, LIST and NLST for directory listings.

Another limitation of FTP is that only one user is allowed at a time. If a new connection is
established to FTP while there already is one, The client receive a message that the
maximum number of connections are exceeded, and the connection is closed.

FTP uses the well known port 21 for control connections. When the client or user wants
to transmit data, a data connection has to be opened. This connection uses port 21.

The FTP daemon is realized as a state machine with the following states:
22 AVR460
2396C–AVR–05/02

AVR460
• UNLOCKED – FTP is free and ready for a new connection. When a connection is
established, the server sends a welcome message to the client and requests a user
name. After the message is sent, state USER is entered.

• USER – The only command accepted in this state is USER giving the user name of
the user. If a USER command is received, a request for the password is sent and
FTP enters PASS state.

• PASS – The only command accepted in this state is PASS giving the password of
the user. If the PASS command is received and the password is correct, FTP enters
IDLE state and sends an acknowledge to the client telling him the user is logged in.
If the password is incorrect, the connection is closed and FTP enters UNLOCKED.

• IDLE – This state is where the rest of the commands are used. When a command
requiring a data connection is received, FTP enters the DATA state. If one of the
other commands is received, FTP does the right action and continues in IDLE state.

• DATA – When FTP is in DATA state, no command processing is done. FTP feeds
TCP with data if the client has asked for data and stores incoming data to a file if the
client wants to store data..

Table 8. FTP Commands

Command Usage Description

USER USER <username> Used during login. Server returns request for
password for the user and enters the PASS state.

PASS PASS <password> Used during login. If the password is correct for the
user, the user is logged in.

TYPE TYPE <type> Tells the server which type the file being transmitted
is. Possible types are I (binary) and A (ASCII). In
AVR embedded web server there is no difference
between the two types.

PORT PORT 192,168,1,2,4,231 Port tells the server which IP address and port
number should be used when opening a data
connection. The first four numbers denotes the IP
address and the two last numbers denotes the port
number. In this example the port number is 4 • 256 +
231 = 1255.

RETR RETR <filename> Used when the client wants to download a file. The
server opens a connection to the IP address and
port number given by the PORT command and
transmits the file using the type given by TYPE.

STOR STOR <filename> Used when the client wants to upload a file. The
server opens a connection to the IP address given
by PORT and retrieves the file sent by the client.

LIST LIST Retrieve the long directory listing with attributes, file
size and file names. The data connections are
opened in the same way used when sending a file
(RETR). After the last file the amount of free space
is sent.

NLST NLST Retrieve the short directory listing with only the file
names.

QUIT QUIT Used by the client when the connection is to be
closed. The server sends ‘Goodbye’ to the client
and closes the connection.
23
2396C–AVR–05/02

Flash File System The file system on the AVR embedded web server is designed for storing web pages
and pictures together with configuration files. These files normally do not need frequent
updates. This means that efficient reading is most important for an overall good perfor-
mance. Another important issue in a Flash file system design is to keep write cycles
distributed over the Flash since each page in the DataFlash is guaranteed for only
10,000 write cycles. A file system with a File Allocation Table (FAT) in one part of the
Flash is unwanted since this would lead to a non-uniform distribution of write cycles.

The file system supports traditional MS-DOS file names with eight plus three characters
and is case sensitive. The maximum number of files is limited only by the number of
pages and available space. The number of concurrently open files is limited by
FILE_MAX_OPEN_FILES defined in file.h. Only one file can be open for writing at a
time.

Linear File System Figure 18. Block Organization in File System

Figure 18 shows how blocks are organized in the DataFlash. The block size is equal to
the page size. Information about the file system is written to EEPROM in a media status
table. This table is changed every time a file is written or deleted. When a file is deleted,
the page number to the file header is written in a table. Pages containing a deleted file is
not freed for use immediately, but only deallocated. When the number of deallocated
files exceeds a predefined number, or there are not any free pages left, deallocated
pages are reclaimed and free for use. Reclaiming is done by sorting the list of deleted
files in increasing page number order and calculating the offset for each file after the
deleted files. All pages are moved according to the offset. The result is that all free
pages is allocated after the last file and can be used again.

Empty Block

Empty Block

First Data Block of
Last File

File Header of Last
File

Third Data Block of
Second File

Second Data Block
of Second File

First Data Block of
Second File

File Header of
Second File

Second Data Block
of First File

First Data Block of
First File

File Header of First
File
24 AVR460
2396C–AVR–05/02

AVR460
Figure 19. Media Status Table

Figure 20. File Header and Block Header

Figure 19 and Figure 20 show how the media status table and file header is formatted.
With this solution a page is only written when a file is written or when deallocated pages
are reclaimed. Normally reclaiming occurs only after files equal the DataFlash size has
been written. This means that write cycles are almost uniformly distributed over the
DataFlash.

status: BUFFER_READY, BUFFER_READ, BUFFER_WRITE,
BUFFER_RECLAIM.
free_space: Number of unused blocks. (Not including
deallocated blocks)
deallocated_space: Number of deallocated blocks. After reclaim
process: free_space += deallocated_space.
deallocated_ptrs: Pointers to deleted files. During reclaim
process these files are freed.

Media Status Table

Status

De_allocated_space

Free_space

Free_space

Last_page

Deallocated_ptrs
(16 Filepointers)

file_id: Unique identification for each file.
file_name: 8 bytes long filename
file_ext: 3 bytes long file extension.
file_size: file size in bytes.
num_pages: number of pages till next file

Block Header

File data.....

File Header

File_size

Num_pages

File_name

File_ext

File_ext

File_id
25
2396C–AVR–05/02

Access Time and Throughput Since this file system is primarily constructed for frequent reading and occasional writ-
ing, write speed is not prioritized. Therefore only read accesses are discussed here.

To access a given file, the file manager starts a linear search starting with the first file.
One read access is needed for each file. The average number of accesses are therefore
given by (N is the number of files):

The number of pages one file consists of equals:

which means the number of blocks needed plus the file header. The SPI uses one fourth
of the frequency of the microcontroller core and for each SPI clock cycle one bit is read.
This gives a access time of approximately 1.86 ms for each page. The average read
time for one file is therefore:

The average throughput when reading files with an average size of 10 kB and an aver-
age of 30 files is:

The maximum throughputs, with one file which fill the entire DataFlash is 0,14 MB/s.

Writing to the file system will be close to the same efficiency as reading, but if a write
triggers the reclaim process, more time is needed.

n
N
2
----= 1()

np 1
size

blocksize
------------------------+ 1

size
264
----------+= = 2()

T n np+()tp
N
2
---- 1

size
264
----------+ +

 1
·
86()ms= = 3()

T
30
2

------ 1
10000

264
----------------+ +

 1.86 ms 15 1 38+ +()1.86 ms 100 ms= = = 4()

Throughput
10kB

100ms
----------------- 0.1 MB/s≈=
26 AVR460
2396C–AVR–05/02

AVR460
Ethernet/TCP/IP/
Applications

Every receive event is triggered by an interrupt from the Ethernet controller. This inter-
rupt has the highest priority, so all other activities are stopped immediately. Responses
to the packet received are sent within this interrupt.

Data sent from the Transmission Control Protocol are sent periodically with a timer inter-
rupt. Every time the timer interrupt occurs, a counter is incremented. This counter
controls when a packet has to be retransmitted.

Applications are running all the time when there is no transmission of packets. This
means that when there are several applications, each application has to be activated in
a round robin manner. Time and memory sharing has to be taken care of by the
programmer.

Limitations Since the software for this web server has been optimized with regard to both size and
speed, there are some limitations to the web server. In the lower layer protocols (Ether-
net - IP), only the functionality required to keep the protocols able to respond to normal
headers is implemented. TCP is simplified, but almost fully implemented.

Security Special precautions must be taken when equipment is connected to an insecure net-
work. This becomes even more important if the equipment performs critical operations
or contains sensitive information. The AVR embedded web server does not take care of
these problems even if the server is capable of controlling critical systems. There are
several ways to prevent unauthorized users to access the AVR embedded web server.
Some of these methods are discussed in this section.

Limiting Access The easiest way to prevent other people from accessing applications running on top of
TCP is only to listen for connection from one specific client. This can be achieved by giv-
ing an IP address when the server starts listening to a port.

TCPpopen (21, 0xc0a80102)

The example above shows how to make TCP listen for a connection on port 21 (FTP)
made by the host with IP address 0xc0a80102 (192.168.1.2). Other requests on this
port are rejected. It is also possible to specify several IP addresses that have access to
the server. This is done by calling TCPpopen several times.

Even if this method seems secure enough for normal applications, the reader must keep
in mind that the connection is not encrypted, so everyone can “listen” to the connection.
It is also possible to steal the IP address and log on to the web server from another IP
location. When the web server IP address is configured by a DHCP server the IP
address will change without notifying the user.

Encryption A more dynamic approach is to encrypt the communication with the server. Instead of
sending data directly to the application on top of the TCP/IP stack, it is sent via an
encryption/decryption algorithm. This means that other users are not able to “listen” to
the connection and that other users, which do not have the correct key, can not commu-
nicate with the server. SSL is an example of such a service. There are also several
other implementations available.

Denial of Service (DOS) Since this server is not intended to serve many users and does not take into account
that thousands of connections can be requested at the same time, a hostile user can
hang the server by exceeding the maximum load of the server. As long as there are hos-
tile users connected to the same server as the AVR embedded web server; it is not
possible to avoid this problem. The best way is to limit the number of users connected to
the same network as the server.
27
2396C–AVR–05/02

Even if it is not possible to be a hundred percent secured, several things can be done to
prevent hostile activity. One is to use a firewall between the AVR embedded web server
and external users. A firewall can stop other users to enter the network while having the
necessary features available for the right users. In combination with some kind of
encryption the server should be secure enough for normal applications.

Configuration The file, server.ini, located in the DataFlash, configures the embedded web server. This
file can be written using either serial communication (ymodem) or FTP. Since FTP can
only be used when the AVR Embedded Web Server is accessible through Ethernet,
serial communication will be the right choice for initial configuration or if the server is not
functioning correctly due to a corrupt configuration. Since serial communication uses
ymodem, any communication software supporting ymodem can be used. For easy con-
figuration and uploading of server.ini, “ATMEL AVR Embedded Web Server Terminal”,
which is a graphical front-end, could be used.

Startup During startup config() is called. It will open the server.ini file and read the following
options:

• MAC-address

• DHCP enable/disable

• Static IP, if DHCP is disabled

If config() is unable to read all the required options, (for example, if the file does not
exist) 0 is returned. DefaultConfig() is called and the default values specified in config.h
will be used.

server.ini The configuration file should be formatted as follows:

[Header1]

name1=value1

name2=value2

[Header2]

name3=value3

When config() is called the following fields are read from server.ini.

The fields should be placed under the header [System].

Table 9. Settings in server.ini

Label Description Example

MAC0 The 16 MSBs of the MAC-address, should be written in hex. MAC0=0001

MAC1 Bit 17-32 of the MAC-address, should be written in hex. MAC1=0A0B

MAC2 The 16 LSBs of the MAC-address, should be written in hex. MAC2=0C0D

DHCP DHCP enable/disable (1/0) DHCP=0

IP0 The 16 MSBs of IP address (if DHCP is disabled), should be written
in hex.

IP0=0ABF

IP1 The 16 LSBs of IP address (if DHCP is disabled), should be written
in hex.

IP1=FF9D
28 AVR460
2396C–AVR–05/02

AVR460
Server.ini can also be used to configure applications; a header for each application
should be made. Values can be accessed by using the getOption() function in config.c.
Currently only SMTP and FTP use server.ini for configuration. Please read the SMTP
and FTP documentation for further details.

Protocol
Dependencies

Figure 21 shows the protocol dependencies for the modules in the AVR Embedded Web
server. The protocols are described below:

Figure 21. Protocol Dependencies

httpd.c
(Hypertext Transfer
Protocol Daemon)

HTTPD needs TCP and a file-system/DataFlash to operate.

ftpd.c
File Transfer Protocol
Daemon)

FTPD needs TCP and a file-system/DataFlash to operate.

smtp.c
(Simple Mail Transfer
Protocol)

SMTP needs a running TCP implementation to operate.

dhcp.c
(Dynamic Host
Configuration Protocol)

DHCP needs IP and UDP to operate. In the initialization phase DHCP requires that the
IP and UDP protocol forward any IP packets delivered before the IP address is config-
ured. The flag dhcpConf is used to signal when DHCP is in initialization phase.

tcp.c (Transmission
Control Protocol)

TCP needs IP to operate.

SMTP FTP HTTP

UDP TCP CONFIG

FILE

ICMP DATAFLASH

DHCP

ETHERNET ARP

Application Layer

Transport Layer

Network Layer

Datalink Layer

IP
29
2396C–AVR–05/02

udp.c
(User Datagram
Protocol)

UDP needs IP to operate.

icmp.c
(Internet Control
Message Protocol)

ICMP needs IP to operate.

ip.c
(Internet Protocol)

IP needs ETHERNET to operate.

arp.c
(Address Resolution
Protocol)

ARP needs ETHERNET to operate

ethernet.c (Ethernet
Controller Driver)

ETHERNET depends only on the hardware Ethernet controller.

config.c (Automatic
Configuration Program)

CONFIG needs file-system/DataFlash to read the configuration file. If the configuration
file is unavailable it can return standard values.

file.c
(File System)

FILE needs DATAFLASH to work.

dataflash.c (DataFlash
Interface)

DATAFLASH is only dependent on the hardware DataFlash.

main.c
(Main Loop)

Main Loop MAIN must initialize Ethernet, DataFlash, file-system, TCP, DHCP and HTTPD if these
protocols are to be used.

DHCP, FTPD and HTTPD require repeatedly polling to operate.
30 AVR460
2396C–AVR–05/02

AVR460
Figure 22. Schematic
31
2396C–AVR–05/02

Pin Description
Table 10. Atmel ATmega103

Pin Number Pin Name Description

1 PEN Programming Enable for low-voltage serial programming
mode. Tied high.

2 PE0(PDI/RXD) Program Data In for ISP and receive for UART1.
Connected to multiplexer, which switches between the two
devices.

3 PE1(PDO/TXD) Program Data Out for ISP and transmit for UART1.
Connected to multiplexer, which switches between the two
devices.

4 PE2 Connected to CPLD for future expansions.

5, 7, 8, 9,
14, 15, 16,
17

PE3, PE5, PE6,
PE7, PB4, PB5,
PB6, PB7

Output[0:7]. Connected to 10x2 connector. Can be used to
connect another card to the web server. These pins may
also be used as input.

6 PE4(INT4) Interrupt request line to Ethernet controller.

10 PB0(SS) Slave Select for Serial Peripheral Interface. Connected to
DataFlash.

11 PB1(SCK) Serial clock input for ISP and serial clock output for SPI.
Connected to multiplexer, which switches between the two
devices.

12 PB2(MOSI) Master Output for SPI. Connected to DataFlash.

13 PB3(MISO) Master Input for SPI. Connected to DataFlash.

18 TOSC2 Not Connected

19 TOSC1 Not Connected

20 RESET Reset signal for microcontroller. Connected to MAX 707
reset circuit.

23 XTAL2 Output crystal oscillator.

24 XTAL1 Input crystal oscillator.

25 PD0(INT0) Reset for Ethernet controller.

26 PD1(INT1) Connected to CPLD for future expansions.

27 PD2(INT2) UART2 receive input.

28 PD3(INT3) UART2 transmit output.

29 PD4(IC1) TCK. JTAG clock. Connected to CPLD for programming
the CPLD.

30 PD5 TDO. JTAG. Connected to CPLD for programming the
CPLD.

31 PD6(T1) TDI. JTAG. Connected to CPLD for programming the
CPLD.

32 PD7(T2) TMS. JTAG. Connected to CPLD for programming the
CPLD.

33 WR External SRAM write signal. Connected to CPLD.

34 RD External SRAM read signal. Connected to CPLD.

35 - 42 PC[0:7] Address 8 up to 15.
32 AVR460
2396C–AVR–05/02

AVR460
43 ALE Address Latch Enable. Connected to CPLD.

44 - 51 PA[7:0] Address 7 down to 0 and Data 7 down to 0. Connected to
CPLD, SRAM and Ethernet controller.

54 - 61 PF[7:0] Input[0:7]. Connected to 10x2 connector. Can be used to
connect another card to the web server. This port also
features an ADC (Analog to Digital Converter). Can only
be used as input.

62 AREF Analog reference voltage.

Table 11. Crystal CS8900

Pin Number Pin Name Description

2, 3, 4, 5, 6, 17 ELCS, EECS,
EESK,
EEDataOut,
EEDataIn,
CSOUT

EEPROM and Boot PROM interface. Not connected.

7 CHIPSEL Used together with external leachable address bus
decode logic. Tied low.

11, 13, 15 DMARQ[2:0] DMA request. Not connected.

12, 14, 16 DMACK[2:0] DMA Acknowledge. Active low. Tied high.

18, 19, 20, 21,
24, 25, 26, 27

SD[15:8] Data[15:8]. Not used. Tied low.

28 MEMW Memory mode write. Connected to CPLD.

29 MEMR Memory mode read. Connected to CPLD.

30, 31, 35 INTRQ[3:1] Interrupt request line 3 down to 1. Not connected.

32 INTRQ0 Interrupt request line 0. Connected to microcontroller.

33 IOCS16 I/O Chip Select 16-bit. Output generated by CS8900 when
it recognizes an address on the ISA bus that corresponds
to its assign I/O space.

34 MEMCS16 Memory Chip Select 16-bit. Output generated by CS8900
when it recognizes an address on the ISA bus that
corresponds to its assign memory space.

36 SBHE System Bus High Enable. Active-low input indicating data
on SD[15:8]. Connected to CPLD.

37, 38, 39, 40,
41, 42, 43, 44,
45, 46, 47, 48,
50, 51, 52, 53,
54, 58, 59, 60

SA[0:19] Address[0:15]. Only address[0:12] connected to address
bus. Rest of pins are tied low.

49 REFRESH Active-low input indicating that a DRAM refresh cycle is in
progress. Tied high.

61 IOW I/O mode write. Connected to CPLD.

62 IOR I/O mode read. Connected to CPLD.

Table 10. Atmel ATmega103 (Continued)

Pin Number Pin Name Description
33
2396C–AVR–05/02

63 AEN Address Enable. Active-high input indicating that the
system DMA controller has control of the ISA bus.
Connected to CPLD.

64 IOCHRDY I/O Channel Ready. Extends read cycles to the CS8900.
Not connected.

65, 66, 67, 68,
71, 72, 73, 74

SD[0:7] Data[0:7]. Connected to Databus.

76 TEST Test select. Tied high.

77 SLEEP Hardware sleep. Tied high.

78 BSTATUS Not connected.

79, 80, 81, 82,
83, 84

AUI Attachment Unit Interface. Not connected.

87, 88 TXD+, TXD- 10BASE-T Transmit. Differential output. Connected to
isolation transformer.

91, 92 RXD+, RXD- 10BASE-T Receive. Differential input. Connected to
isolation transformer.

93 RES Reference Resistor. Connected to a 4.99 ohm resistor
connected to ground.

97 XTAL1 Crystal Oscillator input.

98 XTAL2 Crystal Oscillator output.

99 LINKLED Active-low when CS8900 detects valid link pulses.
Connected to LED.

100 LANLED Active-low when CS8900 detects LAN activity. Connected
to LED.

Table 12. Atmel ATF1502AS

Pin Number Pin Name Description

1 GCLR Global Clear. Connected to global reset signal. Resets the
state of flipflops.

2 WR Write input from microcontroller. Used to generate write
signals and chip enable signals.

4, 5, 6, 8, 9,
11, 12, 14

ADR[7:0] Address[7:0] from address latch. Connected to address
bus.

7 TDI Test Data Input. Connected to microcontroller and JTAG.

13 TMS Connected to microcontroller and JTAG.

17 I/O Connected to PE2 on microcontroller for future
expansions.

18, 19, 20, 21,
24, 25, 26, 27

ADR/Data[0:7] Address and data[0:7]. Address to address latch.
Connected to data bus.

28 ALE Address Latch Enable.

Table 11. Crystal CS8900 (Continued)

Pin Number Pin Name Description
34 AVR460
2396C–AVR–05/02

AVR460
29 I/O Connected to PD1 on microcontroller for future
expansions.

32 TCK Connected to microcontroller and JTAG.

34 IOW I/O write. Connected to IOW on Ethernet controller.

36 IOR I/O read. Connected to IOR on Ethernet controller.

37 MEMW Memory write. Connected to MEMW on Ethernet
controller.

38 TDO Test Data Output. Connected to microcontroller and JTAG.

39 MEMR Memory read. Connected to MEMR on Ethernet
controller.

40, 41 ADR[15:14] Address[15:14]. Used for address decoding.

43 GCK Global clock. Connected to 20 MHz crystal.

44 RD Read input from microcontroller. Used to generate read
signals and chip enable signals.

Table 12. Atmel ATF1502AS (Continued)

Pin Number Pin Name Description
35
2396C–AVR–05/02

Components
Table 13. Components

Ref.des Type Size/Description Package

U1 AS7C256 SRAM SOJ-28

U2 ATF1502AS CPLD PLCC-44

U3 ATmega103 Microcontroller TQFP-64

U4 CS8900 Ethernet Controller TQFP-100

U5 L78M05CDT Voltage Regulator TO252

U6 74HC4053 Multiplexer SO-16

U7 AT45D021 DataFlash SOIC_28

XC2 Crystal 4.608 MHz HC49/4H

XC1 Crystal 20 MHz HC49/4H

T10 PE65745 Isolation Transformer SMT4

U11 MAX202CSE RS232 Driver SO16N

D7 DF10S Rectifier

D8 BAS_16 Protection Diode SOT23

U14 MAX707CSA Reset Circuit SO-8

J1 DSUB9-2 RS232

J2 DSUB9-1 RS232

J3 ISP ISP Connector 6 Pins

J4 HPpod 2x10 Connector 20 Pins

J5 RJ45 RJ45 Connector 8/8

J6 JTAG JTAG Connector 10 Pins

J7 Power Power Connector

R1 Resistor 0805 33 Ohms 0805

R2 Resistor 0805 0 Ohms 0805

R3 Resistor 0805 0 Ohms 0805

R4 Resistor 0805 0 Ohms 0805

R5 Resistor 0805 0 Ohms 0805

R6 Resistor 0805 24 Ohms 0805

R7 Resistor 0805 680 Ohms 0805

R8 Resistor 0805 680 Ohms 0805

R9 Resistor 0805 10K Ohms 0805

R10 Resistor 0805 4.7K Ohms 0805

R11 Resistor 0805 33 Ohms 0805

R12 Resistor 0805 33 Ohms 0805

R13 Resistor 0805 33 Ohms 0805

R14 Resistor 0805 33 Ohms 0805
36 AVR460
2396C–AVR–05/02

AVR460
R15 Resistor 0805 33 Ohms 0805

R16 Resistor 0805 33 Ohms 0805

R17 Resistor 0805 10K Ohms 0805

R18 Resistor 0805 33 Ohms 0805

R19 Resistor 0805 10K Ohms 0805

R20 Resistor 0805 33 Ohms 0805

R21 Resistor 0805 10K Ohms 0805

R22 Resistor 0805 10K Ohms 0805

R23 Resistor 0805 10K Ohms 0805

R24 Resistor 0805 10K Ohms 0805

R25 Resistor 0805 10K Ohms 0805

R26 Resistor 0805 10K Ohms 0805

R27 Resistor 0805 100 Ohms 0805

R28 Resistor 0805 24 Ohms 0805

R29 Resistor 0805 10K Ohms 0805

R30 Resistor 0805 10K Ohms 0805

R31 Resistor 0805 0 Ohms 0805

R32 Resistor 0805 10K Ohms 0805

R33 Resistor 0805 680 Ohms 0805

R34 Resistor 0805 680 Ohms 0805

R35 Resistor 0805 680 Ohms 0805

R36 Resistor 0805 680 Ohms 0805

R37 Resistor 0805 9.1K Ohms 0805

R38 Resistor 0805 11K Ohms 0805

R39 Resistor 0805 0 Ohms 0805

R40 Resistor 0805 0 Ohms 0805

R41 Resistor 0805 0 Ohms 0805

R42 Resistor 0805 0 Ohms 0805

R43 Resistor 0805 0 Ohms 0805

C1 Capacitor 0805 10 pF 0805

C2 Capacitor 0805 68 pF 0805

C3 Capacitor 0805 18 pF 0805

C4 Capacitor 0805 18 pF 0805

C5 Capacitor 0805 100 nF 0805

C6 Capacitor 0805 100 nF 0805

C7 Capacitor 0805 100 nF 0805

Table 13. Components (Continued)

Ref.des Type Size/Description Package
37
2396C–AVR–05/02

C8 Capacitor 0805 100 nF 0805

C9 Capacitor 0805 100 nF 0805

C10 Capacitor 0805 100 nF 0805

C11 Capacitor 0805 18 pF 0805

C12 Capacitor 0805 18 pF 0805

C13 Capacitor 0805 100 nF 0805

C14 Capacitor 0805 100 nF 0805

C15 Capacitor 0805 100 nF 0805

C16 Capacitor 0805 100 nF 0805

C17 Capacitor 0805 100 nF 0805

C18 Capacitor 0805 100 nF 0805

C19 Capacitor 0805 100 nF 0805

C20 Capacitor 0805 100 nF 0805

C21 Capacitor 0805 100 nF 0805

C22 Capacitor 0805 100 nF 0805

C23 Capacitor 0805 100 nF 0805

C24 Capacitor 0805 100 nF 0805

C25 Capacitor 0805 100 nF 0805

C26 Capacitor 0805 100 nF 0805

C27 Capacitor 0805 100 nF 0805

C28 Capacitor 0805 100 nF 0805

C29 Capacitor 0805 100 nF 0805

C30 Capacitor 0805 100 nF 0805

C31 Tantalum Capacitor 7343 220 µF 7343

C32 Tantalum Capacitor 3216 470 nF 3216

L1 LED 0805 Red 0805

L2 LED 0805 Red 0805

L3 LED 0805 Red 0805

L4 LED 0805 Red 0805

L5 LED 0805 Yellow 0805

L6 LED 0805 Yellow 0805

B1 Button SKHUAD SKHUAD

Table 13. Components (Continued)

Ref.des Type Size/Description Package
38 AVR460
2396C–AVR–05/02

AVR460
Appendix 1: C-code
Reference

Ethernet

initEthernet Name: initEthernet - initialize the Ethernet controller.

Usage: #include “ethernet.h”
void initEthernet(void);

Prototype In: ethernet.h

Description: initEthernet initializes the Ethernet controller. initEthernet configures the
Ethernet controller with interrupt on packets with individual address or broadcasts, maps
the memory of the Ethernet controller into the microcontroller’s memory and gives the
Ethernet controller a unique address.

receiveEvent Name: receiveEvent - reads a frame from the Ethernet controller.

Usage: #include “ethernet.h”
void receiveEvent(void);

Prototype In: ethernet.h

Description: receiveEvent should be called everytime a packet is received on the
Ethernet controller (at interrupt 4). receiveEvent reads the packet and gives the control
to either ARP or IP depending on the protocol number in the header field.

sendFrame Name: sendFrame - write the frame to the Ethernet controller for sending.

Usage: #include “ethernet.h”
char sendFrame(unsigned int length, unsigned int type, unsigned int ip0, unsigned int
ip1);

Prototype In: ethernet.h

Description: sendFrame sends length bytes located in the global frame buffer. type is
used to denote the protocol, which sent the frame. ip0 and ip1 are used to find the Ether-
net address of the recipient. If the Ethernet address is not present in the ARP table, the
frame is discarded and an ARP request is sent to the IP address. The sender is respon-
sible to retransmit the frame upon failure.

Return Value sendFrame returns 1 upon success and 0 upon failure.

getMAC Name: getMAC - check if Ethernet address is present in the ARP table.

Usage: #include “ethernet.h”
char getMAC(unsigned int ip0, unsigned int ip1);

Prototype In: ethernet.h

Description: getMAC checks if the Ethernet (Media Access Control) address to the
given IP address is present in the ARP table. If the address is not present, an ARP
request is sent.

Return Value: If the Ethernet address is present in the ARP table, 1 is returned, else 0.
39
2396C–AVR–05/02

dhcpMAC Name: dhcpMAC - store the Ethernet address of the dhcp server permanently.

Usage: #include “ethernet.h”
void dhcpMAC(unsigned int ip0, unsigned int ip1);

Prototype In: ethernet.h

Description: dhcpMAC is called the first time a dhcp offer is received. The Ethernet
address present in the frame is stored permanently for later use.

ARP

receiveARP Name: receiveARP - handles an ARP request.

Usage: #include “arp.h”
void receiveARP(void);

Prototype In: arp.h

Description: receiveARP is called by the link layer (Ethernet, slip) when the frame
received is an ARP request. receiveARP change the request to a reply and calls send-
Frame to send the frame.

sendARP Name: sendARP - send an ARP request.

Usage: #include “arp.h”
void sendARP (unsigned int ip0, unsigned int ip1);

Prototype In: arp.h

Description: sendARP makes an ARP request requesting the IP address and calls
sendFrame to send the frame

IP

transmitIP Name: transmitIP - fills in IP header and sends the frame to link layer.

Usage: #include “ip.h”
void transmitIP(int length, unsigned int ip0, unsigned int ip1, char type);

Prototype In: ip.h

Description: transmitIP is called from transmit layer when a frame needs to be sent.
transmitIP makes an IP header and calls the link layer to send the frame.

receiveIP Name: receiveIP - receive an IP packet.

Usage: #include “ip.h”
void receiveIP(unsigned int length);

Prototype In: ip.h

Description: receiveIP must be called from the link layer (Ethernet) when an IP packet
is received. receiveIP checks the IP header and calls ICMP, TCP or UDP.
40 AVR460
2396C–AVR–05/02

AVR460
ICMP

receiveICMP Name: receiveICMP - receive an ICMP packet.

Usage: #include “icmp.h”

void receiveICMP(unsigned int *frame, int length, unsigned int ip0, unsigned int ip1);

Prototype In: icmp.h

Description: receiveICMP must be called by IP when an ICMP packet is received.
receiveICMP checks the ICMP header fields and responds to requests.

UDP

receiveUDP Name: receiveUDP - receive an UDP datagram from IP.

Usage: Void receiveUDP(unsigned int UDPStart, unsigned int UDPLength, unsigned int
hisIP0, unsigned int hisIP1, unsigned int myIP0, unsigned int myIP1).

Prototype In: udp.h

Description: receiveUDP is called from the IP layer, informing the UDP layer that data
is available in the global buffer frame. The data is copied from the frame to a buffer in
the UDP layer.

UDPStart is the position in the frame where the UDP datagram starts.

UDPLength is the length of the UDP datagram.

hisIP0 is the 16 MSBs of the sender’s IP address.

hisIP1 is the 16 LSBs of the sender’s IP address.

myIP0 is the 16 MSBs of the receiver’s IP address, as it appears in the received IP-
header.

myIP1 is the 16 LSBs of the receiver’s IP address, as it appears in the received IP-
header.

The reason for passing the receiver’s IP address to the UDP layer is when calculating
the checksum, the receiver’s IP address must be known. During DHCP configuration of
the client, the client hasn't received an IP, and needs the IP address from the IP-header
to calculate the checksum correctly.

sendUDP Name: sendUDP - send a UDP-datagram.

Usage: Unsigned char sendUDP(unsigned char * data, unsigned int dataLength,
unsigned int hisIP0, unsigned int hisIP1, unsigned int myPort, unsigned int hisPort).

Prototype In: udp.h

Description: SendUDP sends an UDP datagram.

data - a pointer to the data to be sent.

dataLength - the length of the data.

hisIP0 - the 16 MSBs of the destination IP address.

hisIP1 - the 16 LSBs of the destination IP address.

myPort - the sender’s port.
41
2396C–AVR–05/02

hisPort - the destination port.

Return Value: If the datagram has been sent, a 1 is returned; if unsuccessful, 0 is
returned. If the specified destination is not in the ARP- table, an ARP request is sent and
0 is returned; the datagram must then be retransmitted later.

readUDP Name: readUDP - poll the UDP buffer.

Usage: Unsigned char readUDP(unsigned int port, UDPB * appBuffer).

Prototype In: udp.h

Description: Called by an application to check for new data. If new data is found it is
copied into the application buffer.

AppBuffer is a pointer to the buffer in which the data should be copied.

Return Value: Returns 1 if new data has been found and copied to the buffer; returns 0
otherwise.

TCP

TCPpopen Name: TCPpopen - open a port for listening

Usage: #include “tcp.h”
char TCPpopen (unsigned int port, unsigned long ip);

Prototype In: tcp.h

Description: TCPpopen opens a port and starts listening for connections. port denotes
the port number to listen to and ip denotes the IP, which is allowed to use this port. If ip
is 0, there are no limitations on the IP address.

Return Value: On success TCPpopen returns 1 and on failure 0.

TCPaopen Name: TCPaopen - actively open a connection on the given port.

Usage: #include “tcp.h”
SOCKET *TCPaopen (unsigned int port, unsigned int ip0, unsigned int ip1, unsigned int
myport);

Prototype In: tcp.h

Description: TCPaopen actively opens a connection to the given IP and port, from
MYport. If MYport is 0, a portnumber is assigned by TCPaopen. Once TCPaopen has
completed, data can be sent using TCPsend.

Return Value: TCPaopen returns a pointer to the newly opened socket on success and
a null pointer on failure.

TCPlistenPort Name: TCPlistenPort - check to see if a port is listened to.

Usage: #include “tcp.h”
char TCPlistenPort(unsigned int port, unsigned long ip);

Prototype In: tcp.h

Description: TCPlistenPort reports if there is a socket on the given port. port denotes
the port number and ip denotes the IP address.

Return Value: If the port is listened to, TCPlistenPort returns 1, else 0.
42 AVR460
2396C–AVR–05/02

AVR460
TCPstop Name: TCPstop - stop listening to a port.

Usage: #include “tcp.h”
void TCPstop(unsigned int port, unsigned long ip);

Prototype In: tcp.h

Description: TCPstop stops listening to a given port. port denotes the port and ip
denotes the IP address (see TCPpopen).

TCPfindSockets Name: TCPfindSockets - find connections on a given port.

Usage: #include “tcp.h”
SOCKET *TCPfindSockets(unsigned int port);

Prototype In: tcp.h

Description: TCPfindSockets finds all connections on a given port. If there is more than
one connection, a linked list of sockets is returned. The next socket in the list is found at
socket->next.

Return Value: TCPfindSockets returns a pointer to the first socket on the port if there is
existing connections, else a null pointer is returned.

TCPget Name: TCPget - read incoming data from TCP buffer.

Usage: #include “tcp.h”
int TCPget(SOCKET *socket, int maxSize, char *buffer);

Prototype In: tcp.h

Description: TCPget reads data from the TCP buffer. The pointer to current position is
moved and buffer space is released for new data. socket denotes the socket to read
from, maxSize denotes the maximum size to read and buffer is a pointer to the buffer
where the data should be stored.

Return Value: TCPget returns the number of bytes read from TCP buffer. If there is no
new data in the buffer, 0 is returned.

TCPread

Name: TCPread - read incoming data from TCP buffer without moving pointer.

Usage: #include “tcp.h”
int TCPread(SOCKET *socket, int maxSize, char *buffer, char reset);

Prototype In: tcp.h

Description: TCPread reads data from the TCP buffer. The pointer to current position is
not moved. Instead a temporary pointer shows where to read from the next time
TCPread is called. TCPread should be called with a positive value as reset the first time
it is called. A positive reset value sets the temporarily pointer to the same position as the
current position pointer. (see TCPget)

Return Value: TCPread returns the number of bytes read.
43
2396C–AVR–05/02

TCPreadln Name: TCPreadln - read one line from the TCP buffer.

Usage: #include “tcp.h”
int TCPreadln(SOCKET *socket, int maxSize, char *buffer, char reset);

Prototype In: tcp.h

Description: TCPreadln works the same way as TCPread except that TCPreadln reads
one line at a time. If the line is too long for the buffer, only the maxSize bytes of the TCP
buffer is returned. Next time TCPreadln is called, the rest of the line is read.

Return Value: TCPreadln returns the number of bytes read.

TCPsend Name: TCPsend - write data in TCP buffer for sending.

Usage: #include “tcp.h”
int TCPsend(SOCKET *socket, int size, char *buffer);

Prototype In: tcp.h

Description: TCPsend write size bytes from buffer to TCP buffer for sending on socket.

Return Value: TCPsend returns the number of bytes sent on success. On failure 0 is
returned.

TCPsend_P Name: TCPsend_P - write data from program space to TCP buffer for sending.

Usage: #include “tcp.h”
int TCPsend_P(SOCKET *socket, int size, char flash *buffer);

Prototype In: tcp.h

Description: TCPsend_P writes size bytes from program memory buffer to TCP buffer
for sending on socket.

Return Value: TCPsend_P returns the number of bytes sent on success. On failure, 0 is
returned.

TCPclose Name: TCPclose - close a connection.

Usage: #include “tcp.h”
void TCPclose(SOCKET *socket);

Prototype In: tcp.h

Description: TCPclose closes the connection on socket. If the TCP state is established,
TCP waits until all data is sent and enters fin_wait1. If the TCP state is close_wait, TCP
waits until all data are sent and enters last_ack state. When all data are sent and both
hosts have closed the connection, socket is deleted and prepared for a new connection.

TCPsize Name: TCPsize - return number of unread bytes in TCP buffer.

Usage: #include “tcp.h”
int TCPsize(SOCKET *socket);

Prototype In: tcp.h

Description: TCPsize returns the amount of unread data in TCP buffer. After a TCPget
call, the size is reduced by the size TCPget returned.

Return Value: TCPsize returns the number of bytes in TCP buffer, if the socket does
not exist or there are no data in TCP buffer, 0 is returned.
44 AVR460
2396C–AVR–05/02

AVR460
TCPbufferSpace Name: TCPbufferSpace - return free space in TCP buffer.

Usage: #include “tcp.h”
int TCPbufferSpace(SOCKET *socket);

Prototype In: tcp.h

Description: TCPbufferSpace returns amount of free space in TCP buffer. TCPbuffer-
Space could be called before TCPsend to ensure that there is room for the data written
by TCPsend.

Return Value: TCPbufferSpace returns number of bytes free in TCP buffer.

TCPabort Name: TCPabort - abort a connection.

Usage: #include “tcp.h”
void TCPabort(SOCKET *socket);

Prototype In: tcp.h

Description: TCPabort aborts the connection on socket. A reset is sent to the other
host before the socket is deleted.

TCPinit Name: TCPinit - initialize TCP.

Usage: #include “tcp.h”
void TCPinit(void);

Prototype In: tcp.h

Description: TCPinit must be called before TCP can start.

checkTCP Name: checkTCP - check the connections and send unsent frames.

Usage: #include “tcp.h”
void checkTCP(void);

Prototype In: tcp.h

Description: checkTCP checks all sockets to see if there is some data to be sent or if a
connection should be closed. checkTCP also checks the retransmission buffer to see if
there are any frames that should be sent or deleted from the retransmission buffer.

receiveTCP Name: receiveTCP - receive a TCP frame.

Usage: #include “tcp.h”
void receiveTCP(int length, unsigned int ip0, unsigned int ip1);

Prototype In: tcp.h

Description: receiveTCP must be called by IP every time a TCP frame is received.
receiveTCP responds to TCP control data and acknowledges received data.
45
2396C–AVR–05/02

FTP daemon

ftpd Name: ftpd - file transfer protocol daemon.

Usage: void ftpd (void)

Prototype In: ftpd.h

Description: ftpd should be a part of the main loop. Everytime ftpd is called, ftpd checks
if there is a FTP connection and controls that connection. ftpd also takes care of the FTP
data connection.

DHCP

DHCP Name: DHCP - configure and maintain the DHCP client.

Usage: void DHCP(void);

Prototype In: dhcp.h

Description: The initial call to DHCP configures the server with an IP address and a
lease time for that address. When configuration is done DHCP must be called repeat-
edly to monitor the DHCP finite state machine. The state machine is responsible for
renewal of lease time when time is due.

checkDHCP Name: checkDHCP - DHCP timer function.

Usage: void checkDHCP(void);

Prototype In: dhcp.h

Description: checkDHCP must be called within a timer interrupt every time a timer
overflow occurs, between constant time intervals. To compensate for the frequency of
which checkDHCP is called, DHCP_MINUTE must be adjusted accordingly.

HTTP

httpdInit Name: httpdInit - initialize the HTTP server.

Usage: void httpdInit(void)

Prototype In: httpd.h

Description: httpdInit must be called to initialize the HTTP server.

httpd Name: httpd - HTTP daemon

Usage: void httpd(void)

Prototype In: httpd.h

Description: The HTTP daemon listens to TCP port 80 and processes incoming GET
and POST requests. To run the daemon httpd must be polled in the main program.
46 AVR460
2396C–AVR–05/02

AVR460
SMTP

sendMail Name: sendMail - send a mail.

Usage: unsigned char sendMail(unsigned char * subject, unsigned char * message)

Description: Sends a mail to the mail address specified in the server.ini file, using the
mail server specified in the server.ini file.

subject is a pointer to the subject, the string must end with a ‘\0’

message is a pointer to the message, the string must end with a ‘\0’

Note that maximum length of the two strings is dependent upon the chosen buffer size in
the sendMail function.

Return Value: sendMail returns 1 if the mail has been successfully sent, 0 otherwise

DataFlash

read_page Name: read_page - read a page from DataFlash.

Usage: #include “dataflash.h”
char read_page(int pageNr, char *buffer, int length);

Prototype In: dataflash.h

Description: read_page reads length bytes from pageNr in DataFlash and writes the
data into buffer. pageNr must be less than the number of pages in DataFlash.

Return Value: read_page returns 1 upon success.

write_page Name: write_page - write buffer to page in DataFlash.

Usage: #include “dataflash.h”
char write_page (int pageNr, char *buffer);

Prototype In: dataflash.h

Description: write_page writes 264 bytes from buffer to pageNr in DataFlash. pageNr
must be less than the number of pages in DataFlash.

copy_page Name: copy_page - copy a page in DataFlash to another page in DataFlash.

Usage: #include “dataflash.h”
char copy_page (int toPage, int fromPage);

Prototype In: dataflash.h

Description: copy_page copy the contents of fromPage to toPage.

Return Value: copy_page returns 1 on success.

EEput Name: EEput - write one byte to EEPROM.

Usage: #include “dataflash.h”
void EEput(int uiAddress, char cValue);

Prototype In: dataflash.h

Description: EEput performs a secure write to EEPROM. cValue is written to
uiAddress.
47
2396C–AVR–05/02

EEget Name: EEget - read one byte from EEPROM.

Usage: #include “dataflash.h”
char EEget (int uiAddress);

Prototype In: dataflash.h

Description: EEget preforms a secure read from EEPROM.

Return Value: EEget returns the byte read.

File System

fopen Name: fopen - open a stream.

Usage: #include “file.h”
FILE *fopen(char *filename, char type);

Prototype In: file.h

Description: fopen opens the file named by filename and associates a stream with it.
fopen returns a pointer to be used to identify the stream in subsequent operations.

The type string used in each of these calls is one of the following values:

r Open for reading only.

w Create for writing.

Return Value: On successful completion, fopen returns the newly opened stream. In
the event of error, fopen returns NULL.

fclose Name: fclose - close a stream.

Usage: #include “file.h”
char fclose(FILE *stream);

Prototype In: file.h

Description: fclose closes the named stream. Buffers associated with the stream are
flushed upon closing.

Return Value: fclose returns 1 on success and 0 on failure.

fget Name: fget - get character from stream.

Usage: #include “file.h”
char fget(FILE *stream);

Prototype In: file.h

Description: On success fget returns the character read from the stream. On end-of-file
or error, 0 is returned.

fput Name: fput - put a character to a stream.

Usage: #include “file.h”
void fput(FILE *stream, const char ch);

Prototype In: file.h

Description: On success fput puts a character to the stream. If the file system is unable
to write the character to the DataFlash, no indication of this is returned to the user.
48 AVR460
2396C–AVR–05/02

AVR460
fdelete Name: fdelete - delete a file.

Usage: #include “file.h”
char fdelete(char *filename);

Prototype In: file.h

Description: fdelete deletes the file pointed to by filename.

Return Value: fdelete returns 1 upon success. If the file could not be deleted, 0 is
returned.

format Name: format - format the DataFlash.

Usage: #include “file.h”
void format (void);

Prototype In: file.h

Description: format overwrites the media status table containing information about the
files in the file system, and makes all the space in the file system available for new files.
Old files are not physically deleted, but the references to the files are removed.

read Name: read - reads from file.

Usage: #include “file.h”
int read (FILE *stream, char *buffer, int size);

Prototype In: file.h

Description: read attempts to read size bytes from the file. read uses fget to read one
byte from the file several times to buffer.

Return Value: read returns the number of bytes read. If read is not able to read from the
file because the file is not open or the end-of-file is reached, 0 is returned.

write Name: write - write to file.

Usage: #include “file.h”
int write(FILE *stream, char *buffer, int size);

Prototype In: file.h

Description: write attempts to write size bytes from buffer to the file. write uses fput to
write one byte at a time from buffer.

Return Value: write returns the number of bytes successfully written. If write is not able
to write to the file, 0 is returned.

readln Name: readln - read one line from file.

Usage: #include “file.h”
int readln(FILE *stream, char *buffer, int size);

Prototype In: file.h

Description: readln reads one line from the file. If the line exceeds size, only the first
size bytes of the stream is read. The pointer is moved and next time readln is called, the
next size bytes of the same line is read.

Return Value: readln returns the number of bytes read. If readln is not able to read from
the file because the file is not open or the end-of-file is reached, 0 is returned.
49
2396C–AVR–05/02

feof Name: feof - check if end-of-file is reached.

Usage: #include “file.h”
char feof(FILE *stream);

Prototype In: file.h

Description: feof check if the end-of-file (EOF) is reached.

Return Value: feof returns 1 if EOF is reached, else 0.

finit Name: finit - initialize the file system.

Usage: #include “file.h”
char finit(void);

Prototype In: file.h

Description: finit initializes the file system and must be called before the file system is
used.

Return Value: finit returns 1 one successful initialization, else 0.

findFile Name: findFile - find a file on the DataFlash.

Usage: #include “file.h”
int findFile(char *filename, char *fileext);

Prototype In:file.h

Description: findFile finds the file specified by filename and fileext. findFile can be used
to check if a file is present before opening the file for reading.

Return Value: findFile returns the page number where the file header for the file is
located on success and FNULL (0xffff) on failure.

opendir Name: opendir - open the directory for reading.

Usage: #include “file.h”
DIR *opendir(void);

Prototype In: file.h

Description: opendir opens the directory listing for reading. Only one directory can be
open at a time.

Return Value: fopendir returns a pointer to the directory stream on success. If the
opendir is not able to open the directory for reading, NULL is returned.

readdir Name: readdir - output one line of the directory listing.

Usage: #include “file.h”
char *readdir(DIR *_dir);

Prototype In: file.h

Description: readdir reads one filename each time it is called. To read a whole direc-
tory, readdir must be called several times until the whole directory listing is read.

Return Value: readdir returns a pointer to a null terminated string containing a filename
and CRLF. When the whole listing is read, a null pointer is returned.
50 AVR460
2396C–AVR–05/02

AVR460
readwdir Name: readwdir - output one line of the directory listing.

Usage: ##include “file.h”
char *readwdir(DIR *_dir);

Prototype In: file.h

Description: readwdir reads one filename and the information about that file. After all
the files are read, the amount of free space is returned. See readdir.

Return Value: readwdir returns a pointer to a null terminated string containing a file-
name and CRLF. After the whole listing is read, a pointer to a null terminated string
containing “Free space: xxxx” where x is the size of free space. If readwdir is called
another time, a null pointer is returned.

rewinddir Name: rewinddir - reset the pointer to directory listing.

Usage: #include “file.h”
void rewinddir(DIR *_dir);

Prototype In: file.h

Description: rewinddir reset the pointer to the listing so that next time readdir or read-
wdir is called, the first file in the listing is returned.

closedir Name: closedir - closes the directory stream.

Usage: #include “file.h”
char closedir(DIR *_dir);

Prototype In: file.h

Description: closedir - close the directory stream.

Return Value: closedir returns 1 on success and 0 on failure.
51
2396C–AVR–05/02

Bibliography [EME99] Gary Desrosiers, 99. Embedded Ethernet. http://www.embeddedether-
net.com/ [Accessed Feb 2000].

[TCP86] Geoffrey H. Cooper. IMAGEN Corporation. http://www.csonline.net/bpad-
dock/tinytcp/default.htm [Accessed Feb 2000].

[RFC1945] Berners-Lee, Fielding, T. R., Irvine, H. UC, Frystyk. Request for Com-
ments: 1945, May 1996. http://www.faqs.org/rfcs/rfc1945.html [Accessed
Mars 2000].

[RCF793] Postel, Jon., Information Sciences Institute. University of Southern
California., Request For Comments:793, September 1981.
http://www.faqs.org/rfcs/std/std7.html
[Accessed Mars 2000].

[RCF791] Postel, Jon., Information Sciences Institute. University of Southern
California., Network Working Group, Request For Comments: 791,
September 1981.
http://www.faqs.org/rfcs/rfc791.html
[Accessed Mars 2000].

[RFC826] Plummer, David C., Network Working Group. Request For Comments: 826,
November 1982 http://www.faqs.org/rfcs/rfc826.html
[Accessed Mars 2000].

[RFC894] Hornig, Charles., Network Working Group.,Symbolics Cambridge
Research Center, Network Working Group, Request For Comments: 894,
April 1984
http://www.faqs.org/rfcs/rfc894.html
[Accessed Mars 2000].

[RCF792] Postel, Jon., Information Sciences Institute. University of Southern
California., Network Working Group, Request For Comments: 792,
September 1981
http://www.faqs.org/rfcs/rfc792.html
[Accessed Mars 2000].

[WST94] Richard Stevens, W., TCP/IP Illustrated, Volume 1, The Protocols, USA,
Addison-Wesley,. 1994

[IAR99] IAR Systems, AT90S C Compiler, Programming guide, September 1996

[AVR99] Atmel Corporation., AVR, 8-bit RISC Microcontrollers, Data Book, USA
August 1999.

[INT98] Intel Application Note, AP-686, Flash File System Selection Guide, 1998
52 AVR460
2396C–AVR–05/02

 Printed on recycled paper.

© Atmel Corporation 2002.
Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company’s standard warranty
which is detailed in Atmel’s Terms and Conditions located on the Company’s web site. The Company assumes no responsibility for any errors
which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and does
not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are granted
by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel’s products are not authorized for use as critical
components in life support devices or systems.

Atmel Headquarters Atmel Operations

Corporate Headquarters
2325 Orchard Parkway
San Jose, CA 95131
TEL 1(408) 441-0311
FAX 1(408) 487-2600

Europe
Atmel Sarl
Route des Arsenaux 41
Case Postale 80
CH-1705 Fribourg
Switzerland
TEL (41) 26-426-5555
FAX (41) 26-426-5500

Asia
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimhatsui
East Kowloon
Hong Kong
TEL (852) 2721-9778
FAX (852) 2722-1369

Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
TEL (81) 3-3523-3551
FAX (81) 3-3523-7581

Memory
2325 Orchard Parkway
San Jose, CA 95131
TEL 1(408) 441-0311
FAX 1(408) 436-4314

Microcontrollers
2325 Orchard Parkway
San Jose, CA 95131
TEL 1(408) 441-0311
FAX 1(408) 436-4314

La Chantrerie
BP 70602
44306 Nantes Cedex 3, France
TEL (33) 2-40-18-18-18
FAX (33) 2-40-18-19-60

ASIC/ASSP/Smart Cards
Zone Industrielle
13106 Rousset Cedex, France
TEL (33) 4-42-53-60-00
FAX (33) 4-42-53-60-01

1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906
TEL 1(719) 576-3300
FAX 1(719) 540-1759

Scottish Enterprise Technology Park
Maxwell Building
East Kilbride G75 0QR, Scotland
TEL (44) 1355-803-000
FAX (44) 1355-242-743

RF/Automotive
Theresienstrasse 2
Postfach 3535
74025 Heilbronn, Germany
TEL (49) 71-31-67-0
FAX (49) 71-31-67-2340

1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906
TEL 1(719) 576-3300
FAX 1(719) 540-1759

Biometrics/Imaging/Hi-Rel MPU/
High Speed Converters/RF Datacom

Avenue de Rochepleine
BP 123
38521 Saint-Egreve Cedex, France
TEL (33) 4-76-58-30-00
FAX (33) 4-76-58-34-80

e-mail
literature@atmel.com

Web Site
http://www.atmel.com

2396C–AVR–05/02 0M

ATMEL®, AVR®, and DataFlash® are the registered trademarks of Atmel.

Unix® is the registered trademark of Unix Corporation; Windows NT® is the registered trademark of Microsoft
Corporation.

Other terms and product names may be the trademarks of others.

	Introduction
	System Description
	TCP/IP Protocol Suite
	TCP/IP Suite Layers
	Application Layer
	Transport Layer
	Network Layer
	Link Layer
	Port Numbers

	Encapsulation
	Internet Addresses

	IP: Internet Protocol
	IP Header
	Version
	Header Length
	Type-of-service
	Total Length
	Identification
	Time-to-live
	Protocol
	Header Checksum
	The Option Field

	UDP: User Datagram Protocol
	UDP Header

	TCP: Transmission Control Protocol
	TCP Header
	Sequence Number
	Acknowledge Number
	Header Length
	Flag Bits
	Window Size
	Checksum
	Urgent Pointer
	Checksum
	Data
	Ethernet Encapsulation
	Destination Address
	Source Address
	Ethernet Type
	CRC
	Minimum Size

	ARP and RARP – (Reverse) Address Resolution Protocol
	ARP Packet Format
	Source and Destination Ethernet Addresses
	Ethernet Frame Type
	Hard Type
	Prot Type
	Hard Size and Prot Size
	Op
	Sender Hardware Address

	Dynamic Host Configuration Protocol (DHCP)
	Hypertext Transfer Protocol (HTTP)
	HTTP Message
	HTTP Request Message
	HTTP Response Message

	HTTP Methods
	Status Codes

	Simple Mail Transfer Protocol (SMTP)
	SMTP Mail Transfer
	Diagnostic Programs: PING

	Hardware
	Memory
	Ethernet Controller
	Limitations
	Communication and Add-on Cards

	AVR Software
	Link Layer
	Ethernet Driver

	Network Layer
	ARP: Address Resolution Protocol
	IP: Internet Protocol

	DHCP: Dynamic Host Configuration Protocol
	Interface
	Initialization
	Lease Time
	Other Modifications and Limitations
	ICMP: Internet Control Message Protocol

	Transport Layer
	Transmission Control Protocol
	TCP State Machine
	LISTEN
	SYN_SENT
	SYN_RCVD
	Established
	FIN_WAIT1
	FIN_WAIT2
	CLOSE_WAIT
	LAST_ACK
	TIME_WAIT
	Sockets and Windows

	Applications
	File Transfer Protocol Daemon

	Flash File System
	Linear File System
	Access Time and Throughput

	Ethernet/TCP/IP/ Applications
	Limitations

	Security
	Limiting Access
	Encryption
	Denial of Service (DOS)

	Configuration
	Startup
	server.ini

	Protocol Dependencies
	httpd.c (Hypertext Transfer Protocol Daemon)
	ftpd.c File Transfer Protocol Daemon)
	smtp.c (Simple Mail Transfer Protocol)
	dhcp.c (Dynamic Host Configuration Protocol)
	tcp.c (Transmission Control Protocol)
	udp.c (User Datagram Protocol)
	icmp.c (Internet Control Message Protocol)
	ip.c (Internet Protocol)
	arp.c (Address Resolution Protocol)
	ethernet.c (Ethernet Controller Driver)
	config.c (Automatic Configuration Program)
	file.c (File System)
	dataflash.c (DataFlash Interface)
	main.c (Main Loop)
	Main Loop

	Pin Description
	Components
	Appendix 1: C�code Reference
	Ethernet
	initEthernet
	receiveEvent
	sendFrame
	Return Value

	getMAC
	dhcpMAC
	ARP
	receiveARP
	sendARP

	IP
	transmitIP
	receiveIP
	ICMP
	receiveICMP

	UDP
	receiveUDP
	sendUDP
	readUDP
	TCP
	TCPpopen
	TCPaopen
	TCPlistenPort
	TCPstop
	TCPfindSockets
	TCPget
	TCPread
	TCPreadln
	TCPsend
	TCPsend_P
	TCPclose
	TCPsize
	TCPbufferSpace
	TCPabort
	TCPinit
	checkTCP
	receiveTCP
	FTP daemon
	ftpd
	DHCP
	DHCP
	checkDHCP
	HTTP
	httpdInit
	httpd
	SMTP
	sendMail
	DataFlash
	read_page
	write_page
	copy_page
	EEput
	EEget
	File System
	fopen
	fclose
	fget
	fput
	fdelete
	format
	read
	write
	readln
	feof
	finit
	findFile
	opendir
	readdir
	readwdir
	rewinddir
	closedir
	Bibliography

